Diamond Electronics
Amplifier to Detector



Overview
Why Diamond?

Electron transport

— Electrons vs X-rays — What can we learn?

— Responsivity & gain

— Charge collection distance (CCD) & Trapping
— White beam test

Diamond-metal interface
Defects and spatial uniformity

-~uture experiments



Why Diamond?

Electron Amplifier
Radiation hard
Fast (high mobility)
High thermal conductivity
Robust ohmic contacts

Negative electron affinity
— Easy (Hydrogen)

— Robust (Covalent Bond)

— Controllable?

Detector
Radiation hard
Fast
High thermal conductivity
Robust ohmic contacts
Solar blind
Low leakage

Low absorption

— Transmission devices (beam
monitors)



Electron Transport in Diamond
Electron Generated, Amplifier Case
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Electron Transport in Diamond
Photon Generated, Detector Case
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Why use X-rays?

Penetration depth is a strong function of energy ->
Can differentiate between surface and bulk effects

Electron energy from photoabsorption is well defined
— can accurately measure mean ionization energy W

Absorption edges allow differentiation of attenuation
from metal vs “dead” carbon

Distinguish between electron and hole effects
Shorter pulses and higher flux available
Calibrated diagnostic beamlines available at NSLS
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Responsivity and “Gain”

In the detector business, the term gain is generally reserved for
amplification mechanisms which add energy to the signal in the
conversion mechanism (avalanche in a gas detector, for example)

For the electron “amplifier”, this is not the case — the incident
electron is losing it’s energy, and this energy is converted into
carriers, much like a calorimeter

Similarly, in a photodetector, the energetic electron produced via
absorption of an x-ray photon will produce many carriers

The “responsivity” of a photodetector (in A/W) is given by:

S —_ l e wmdow/ A‘wmdow (1 actzve / A’acz‘lve )

W
W is the mean ionization energy — the energy required to create an

electron-hole pair



Trapping and Pulsed Bias

* Initially, DC bias was used on detector

— Hole response was much lower than expected, and non-
linear with flux

* By pulsing the bias on the detector (using an amplified square
wave for bias)

— Hole response matched the model prediction for bias field
greater than 0.1 MV/m -> nearly all charge collected

— Works for wide range of frequencies (1 Hz to >10kHz) and
duty cycles (up to 99%)

— During off cycle, x-ray illumination generates carriers which
drift toward and neutralize trapped charge



Responsivity Measurements
Detector Geometry

Insulator
4 Addressable Electrodes

IG: Incident Guard
Ground Ground IE: Incident Electrode

TE: Transmission Electrode
TG: Transmission Guard
Each can be biased (+ or -) or

used for measurement, allowing
two hole measurements and
two electron measurements

Jl Guards biased to suppress
—_— s - photoemission
IG IE | TE TG 5 single crystal diamonds tested
(various metallizations)
Diamond

Metalized both sides



Responsivity (AIW)

Hole Responsivity vs Photon Energy
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Responsivity (A/W)
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What about electrons?

* Electron response depends strongly on type of
electrical contacts (more on contacts later)

* For blocking contacts, electrons exhibit significantly
more trapping than holes
— Lower duty cycle of pulsed bias to avoid signal loss
— Never collect all electrons

* For ohmic (annealed contacts), photoconductive gain
is observed
— Trapped electrons act as effective “doping” of material
— Boundary conditions require material to be charge neutral
— Holes are injected from opposite electrode



hv

Photoconductive Gain

Photons produce initial carriers
Electrons drift through diamond
Some electrons are trapped in material
Act as effective p-type doping as long they are trapped

One hole 1s injected into diamond for each trapped
electron, keeping material charge neutral

Holes drift through diamond
New holes enter, each time adding current

Process continues until the hole is trapped in the material
or the trapped electron is neutralized

Tholes Hole lifetime

{

Gain =

holes Hole transit time
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Responsivity (A/W)

Electron Response, ohmic
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Responsivity (A/W)

Ti/Pt annealed & Cu, holes, 100V bias
Contacts: one ohmic, one blocking
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Svs V (Ti/Pt annealed & Cu)
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Ratio of Electron to Hole Response
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Responsivity at 1 keV Photon Energy (A/W)
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Responsivity Conclusions

Holes are the majority carrier in these synthetic
diamonds (due to ultra low N content)

Charge collection for holes is limited only by diffusion
of carriers if field is low — for E>0.1 MV/m, all holes
collected

Simple model of Responsivity yield thickness of
damaged carbon layer, metal thicknesses

Electron trapping occurs in bulk diamond; cannot
collect all electrons — leads to PC gain w/ two ohmic
contacts

Can sweep trapped charge by irradiating diamond w/
o bias



White Beam Test

Diamond detector used on beam at X28C, with 17W
of X-ray power, ranging from 6 keV to 15 keV

Intercepted ~1/6 of beam

Generated 30 mA of current through diamond in a
1.6mm diameter area — power supply limited
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X-ray Ring (50 micron Al, 4mA, 100V)
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Metal-Diamond Interface

Metals are sputtered onto diamond using mask
-3mm diameter on center of a 4x4 square diamond

Typical contact in industry is Ti-Pt-Au (50/50/500nm)
We use Ti-Pt, (15/25nm), also Mo, Nb, Al and Cu
All contacts are blocking as deposited

For carbide-forming metals (Ti, Mo, Nb), ohmic
contacts have been generated via thermal anneal

Transition to carbide has been monitored by x-ray
diffraction at X20C

Ohmic contacts do not rely on tunneling to extract
charge — should avoid charge pile-up in amplifier

Carbides have good adhesion and thermal properties
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Responsivity vs Voltage (Mo,

1keV)
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Responsivity (Mo,C, post anneal, 1keV)
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Lithographic Pattering of Contacts




Conclusions & Thoughts

Unnannealed contacts are blocking in nature
Carbide contacts become ohmic

Model of responsivity well predicts results for wide
range of photon energies

Ohmic contacts on both sides enable photoconductive
gain for electrons, suggesting electron trapping

Holes are the majority carrier!

A single ohmic contact does not allow gain => no
“additional current” from hydrogenated diamonds

Gain is not spatially uniform, suggesting that electron
trapping may be related to defects



Conclusions & Thoughts

X-ray topography suggests defects are most common
near edges, where gain is highest

Trapped electrons can be cleaned, preventing gain

0.1 MV/m is sufficient to collect all holes in diamond
0.5 mm thick

30 mA current demonstrated in 1.6 mm diameter
spot => 1.5A/cm?

Response is fast enough to resolve ring for 100V bias
Significant synergy between detector and amplifier
applications

Measurement provide material data relevant to
Monte Carlo modeling of amplifier (W, mobility,
Charge collection distance for electrons and holes)



Thanks for your attention!
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